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Experimental Properties of Three-Cavity
Tunnel Diode RF Oscillators

ISIDORO E, CAMPLSI AND WILLIAM O. HAMILTON

Abstract —The properties of an oscillator-frequency stabilization scheme

involving a system of three resonators used in conjunction with a tunnel

diode as an active element are discussed. A theoretical description of the

khavior of the oscillator is given, together with a procedure which allows

one to verify the validity of the theoretical model. It is found that as the

oscillator is tuned over the operating frequency range, two sets of hyster-

etic frequency jumps are observed, the measured position of which should

completely characterize the stabilization system’s parameters. Results of

the frequency stability measurements on a prototype of the three-cavity

oscillator are afso presented which experimentally agree with the predicted

stabilization prop&ties of the system.

I. INTRODUCTION

T HE USE OF high-quality factor resonators in the

frequency stabilization of radio-frequency or micro-

wave oscillators is “an established technique. Since super-

conducting resonators became available with QO =

1010–1011, the best absolute frequency stability perfor-

mances have been obtained by means of techniques which

lock the frequency of a free-running oscillator to a super-

conducting, stable cavity [1]–[3].

Among the various stabilization schemes proposed over

the years, a particularly promising one has been developed

in the Soviet Union [4]–[6]. In this scheme an active

element, such as a tunnel diode, is stabilized in frequency

by coupling it to a system of three cavities. This approach

presents advantages over the use of a single cavity as

a stabilizing element; for instance, it is possible to decrease

the effect of the tunnel diode’s bias current noise [7] by

strongly coupling it to the first cavity (oscillator cavity)

and at the same time one can minimize the self-oscillator

noise [8], which is inversely proportional to the cavity-

loaded quality factor. A single-cavity stabilized oscillator

could not fulfill both requirements at the same time. The

frequency stabilization scheme considered seems particw

larly promising in applications where a very compact sec-

ondary frequency standard is needed, such as in low-tem-

perature experiments which require a radio-frequency local

oscillator completely operating in a cryogenic environ-

ment [9].
An oscillator was built, operating at 430 MHz, to experi-

mentally verify the validity of the theoretical analysis. This
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first model was not constructed for ultimate absolute

frequency stability, but to allow for the possibility of

varying critical parameters, such as cavity frequencies and

coupling coefficients, the values of which determine the

behavior of the oscillator in the theoretical model. Power

spectra of fractional frequency fluctuations were measured

for the system operating both as a single-cavity and as a

three-cavity oscillator, and their comparison confirmed the

improvement in the operation of the three-cavity system

expected from the theory.

II. THEORETICAL DESCRIPTION OF THE

THREE-CAVITY OSCILLATOR

A detailed analysis of the system was first done by

Minakova and collaborators [10] -[14]. The simplest model

describing this oscillator is one in which three RLC circuits

are coupled together and are powered by an active device

which has a nonlinear voltage–current characteristic (see

Fig. 1). The three coupled nonlinear differential equations

corresponding to this model cannot be exactly solved ana-

lytically, therefore, an approximate analytical method must

be used. The full analysis of the system can be found in [9]:

it makes use of the slowly varying amplitude method of

Bogolyubov and Mitropolski in order to transform the set

of three nonlinear differential equations into a set of six

nonlinear algebraic equations for amplitudes and phases of

the steady-state currents in the three circuits.

The stabilization properties of the system can be derived

from these algebraic equations by solving them in terms of

the oscillator frequency and of the resonators’ natural

frequencies. It is important to know the, dependence of the

oscillator frequency in terms of the oscillator cavity’s (reso-

nator 1) resonant frequency. This is because the oscillator’s

cavity frequency is, in first approximation, the frequency

of oscillation of a one-cavity oscillator so that the proper-

ties of a single-cavity oscillator can be related to the

three-cavity one through this relation. This dependence

comes out to be [10]

qd+aqz+b
&=qv4+cq2+d (1)

where $1 = (a; – Q: )/ti2, q = (W2 – ti~)/co2, u is the oscil-

lator (angular) frequency, and o, is the resonant (angular)

frequency of the ith resonator. The constants a, b, c, and d

are functions of the coupling coefficients and of the quality
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Fig. 1. Equivalent circuit of the three-cavity oscillator.

factors of the cavities

a=i3~+8~-k~-2k~

b=(k:+8,8~)2+ k:(k; –&)

c=8; +6:–2k;

d=(k; +rS28q)2 (2)

with 82 = l/Q2, 83 = l/Q~, k? = Xf121421/L1&, and ki =

M2~ M~2/L2LJ. M,l are the mutual equivalent inductances

of the resonators, L, their self inductances. Equation (1)

relates the detuning of the oscillator to the first cavity

detuning under the assumption that the second and third

cavities are tuned together ( c02= ti3 ). The oscillator is

always operated close to the synchronism point (v = U2 =

o+) where the interaction of the oscillator frequency with

the auxiliary cavities’ frequency is important. Under this

circumstance, cl - q <<1, so that

(@2- ti;)/u2= (@+u3)(u-u3)/@2

=2@(Q–@3)/ti* =2(@ -u3)/u. (3)

Therefore, (3) represents the dimensionless frequency de-

tuning with respect to the synchronism point Q = c+ = CJ3.

It should be noted that (1) is inverted since the indepen-

dent variable is $1: the quantity which can be physically

changed is the resonant frequency of resonator 1, to which

a frequency change of the oscillator follows according to

(l). Equation (1) represents, in general, a multivalued

function (see Fig. 2) so that for a given value of UI more

than one frequency of oscillation is possible. This property

can also be understood in terms of the hysteretic behavior

of the oscillator as the first resonator is tuned close to the

synchronism point. Frequency jumps occur, which bring

the oscillator frequency from one stable branch of oscilla-

tion to another (see Fig. 3). The stable branches are the

ones for which the derivative dq/d[l is positive.

The description that follows highlights the operational

properties of the oscillator relating them to the theoretical

analysis, as they were observed and systematically mea-

sured by determining the frequency of the hysteretic jumps.

When the first cavity is detuned away from the synchro-

nism point, the oscillator behaves like a single-cavity oscil-

lator, in the sense that its frequency linearly follows the

resonant cavity frequency. This agrees with the fact that

the quantity

q4+aq2+b

q4+cq2+d

asymptotically converges.

KI=5. 0X10-3
K2=2. 2X10-3

o0 Q2=5.0X102
: Q3=5,0X105
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Fig. 2. Stability curve of a three-cavity oscillator.
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Fig. 3. Locations of the frequency jumps. The indices label the jump
frequencies. A similar set of frequencies is defined for the jumps at
frequencies below synchromsrn.

The phenomenon of frequency jumps of an oscillator

coupled to an additional cavity is well known [15] and is

the result of the fact that, when this coupling occurs, two

separate modes of oscillation can exist. Although the modes

are available simultaneously, the oscillator will lock to the

one that, for the particular frequency of operation chosen,

has higher stability. If the oscillator operating frequency is

changed, then jumps can occur from one mode to the

other, due to the fact that the mode stability is frequency

dependent. The jump is hysteretic, so that the oscillator

will go back to the original mode at a different frequency.

Another way of analyzing the jump phenomenon is by

considering the additional resonator as having a resonance

line with a certain width. As the oscillator is tuned toward
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the second resonator’s frequency, it will interact with its

resonance line. Since oscillations are forbidden at the addi-

tional resonator’s frequency by stability conditions [15], the

oscillator line will have to perform a frequency jump across

the second resonance line.

The same stability criterion applies when the oscillator is

properly coupled to two additional resonators. The only

difference in this case is that the two resonators, being

coupled together and tuned to the same frequency, exhibit

not one, but two resonance lines. This line-splitting arises

from the coupling terms of the two differential equations

describing the resonators (as well as, e.g., coupled pendula)

which give, as natural frequencies of oscillation VI = VO+

Av/2, Vz= VO– Av/2; VOis the natural resonance frequency

of both resonators when decoupled, A v is the line-splitting,

proportional to the coupling coefficient.

Therefore, when an oscillator is coupled to two addi-

tional resonators and it is tuned over a frequency range

containing both resonance lines, not one, but two frequency

jumps will be observed across the resonance lines corre-

sponding to the frequencies VI and Vz described above.

Each of these two jumps is hysteretic.

Since two jumps are possible, a central branch of oscilla-

tion between the frequencies VI and Vz can be observed. In

terms of Fig. 2, this branch corresponds to the modes of

oscillation lying on the part of the curve going through the

origin. The frequencies VI and Vz correspond to the points

where the curve crosses the 450 line. These parts of the

curve have negative slope, which is equivalent to saying

that the branch is unstable, since they physically represent

the widths of the double lines of the coupled resonators 2

and 3: in these regions, oscillations cannot exist. The slope

of the central branch at the synchronism point ( q = ~1 = O),

the inverse of which we call the stabilization coefficient

(see (8)), strongly depends on the coupling properties and

on the choice of the resonators’ quality factors. In general,

a small Qz and a large Qj are required for large stabiliza-

tion. The central branch can therefore be made very flat,

thus implying that even large fluctuations in $1 (and there-

fore in al) can be reduced to small fluctuations in q (and

therefore in the oscillator frequency). The above statements

are not true in absolute, since an infinite stability of ti~ is

assumed. What is true is that, under proper choice of

coupling and of quality factors, the oscillator will be tightly

locked to the frequency of the third resonator, which can

be made very stable but which, in the final analysis, is the

limiting factor of any resonator-stabilized oscillator.

The existence of the central branch of oscillation can be

verified by ascertaining that the oscillator frequency under-

goes two separate hysteretic jumps at the edges of the

branch itself. The slope of the central branch can be

changed by moving the resonances VI and Vz closer or
farther apart, that is, by changing the coupling between the

cavities. If the coupling is too small, though, the central

branch might disappear.

The best stability performance occurs when the two

resonators are coupled slightly above the critical coupling,

so that the two resonances are as close together as possible

(thus the central branch is as flat as possible) while still

~pL’NGLOO;/-f”wER”uT
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Fig. 4. Cross section of the three-cavity oscillator.

preserving their double line structure. Below critical cou-

pling, the oscillator line will “see” the second- and third-

cavity resonances as a single line and will jump clear across

both, thus proving the nonexistence of a central branch.

III. EXPERIMENTAL APPARATUS AND TEST

PROCEDURE

A first version of the three-cavity oscillator was built in

order to verify the system’s features predicted by the

theory and to determine which parameters play the most

important roles in the stability performance of the oscilla-

tor itself.

The oscillator was built out of OFHC copper with

reentrant, coaxial-type cavities resonating at -430 MHz

(see Fig. 4). The choice of the operating frequency was

dictated by the requirement that the oscillator could be

used in the future in a gravity-wave detection scheme,

which makes use of an RF system in that frequency range

[16].

The oscillator was designed to operate at cryogenic

temperatures, to make use of superconductors to improve

the Q of the third stabilizing cavity. A special high-vacuum

cryostat was built for this purpose, with mechanical feed-

throughs which enable one to vary the first- and second-

cavity frequencies, as well as the coupling coefficients

between cavities, from the room-temperature environment.

The third cavity was lead electroplated and then chemi-

cally polished, according to a procedure developed at Cal

Tech [17]. It was assembled in an inert-gas glove box.

Although the cavity was not optimized to achieve very high

quality factors, unloaded Q‘s of 2–3 X 107 were routinely
reached at -2 K. During the operation in conjunction

with the three-cavity oscillator, Q‘s two orders of magni-

tude smaller were used in order to facilitate the determina-

tion of the system’s parameters. The first and second cavity

had unloaded Q‘s typically of 2–5 X 104.

The tuning of the first cavity was accomplished through

a flexible diaphragm, while the second resonator was tuned

by means of a retractable post.
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FREQUENCY

Fig. 5. Response curves for one and two coupled cavities, l-MHz full
scale.

The first and second cavities were coupled using a

double loop which could be turned from outside the cryo-

stat. The coupling between second and third resonators

was achieved through an iris, into which a length of a

sapphire cylinder could be inserted to change the amount

of coupling to the desired value.

The low-power tunnel diodes used to excite the oscillator

had typical peak currents in the 1OO-VA range and they

were coupled into the oscillator cavity by means of a short,

thick wire grounded to the center post.

More details on the construction of the oscillator can be

found in [9].

Although the oscillator signal can be extracted through

the same line that carries the dc bias to the tunnel diode,

two diagnostics ports were used in cavities 2 and 3 to more

easily control their tuning, and for the measurement of the

coupling coefficient between them. This measurement was

done in transmission by using an RF synthesizer and a

crystal detector. Fig. 5 shows a graph derived from an

oscilloscope trace of the transmitted power through the

third cavity as a function of frequency, both for the single

cavity and then for the two cavities coupled together [18].

The characterization of the oscillator performance was

done by measuring the spectral density of fractional

frequency fluctuations [19], through a phase-locked loop

system connected to a reference oscillator (see Fig. 6). The

time-dependent phase error signal in the loop was fed into

a minicomputer and later processed via Fast Fourier

Transform.

Power spectra were obtained for the oscillator operating

both in the single-cavity mode and with the stabilizing

cavities. Improvements were observed in the performance

of the oscillator when the three-cavity system was used (see

Fig. 7). Fig. 7 represents the smoothed power spectrum

obtained from a 512-point Fourier transform over the

range of 10 – 2–1 Hz from the carrier. The decrease in the

amplitude of some spectral components was more than two

orders of magnitude (40 db in the spectral density), a fact

which also was verified by visually inspecting the short

term (10- 3s) amplitude of the phase-error signal on a CRT

display.

Since the stabilization coefficient is a function of the

coupling coefficient between the second and third cavity,

stability measurements were performed with various de-

grees of coupling. Of particular interest was the perfor-

mance in the vicinity of the critical coupling, where the

central branch of Fig. 2 has the flattest slope before

disappearing altogether (corresponding to the oscillator
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Fig. 6. Experimental setup for the measurement of frequency stability.
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Fig. 7. Power spectrum of fractional frequency fluctuations for the

single-cavity and three-cavity oscillator.
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Fig. 8. Scheme for measuring frequency jumps.

line jumping across the second- and third-cavity reso-

nances). In this limit, the stabilization coefficient is of the

order of S - Q~/Qz [12]. With our system, this quantity

turns out to be of the order of S - 1–5X102, which is in

agreement with the stabilization independently measured

through power spectra.

Two methods were followed to verify the occurrence of

frequency jumps and to measure the value of those fre-

quencies. The first method is slightly perturbative, since it

requires the use of a frequency synthesizer feeding the

second and third cavity in transmission (see Fig. 8). The

transmission signal is rectified and observed on the CRT.

A typical pattern from this measurement is shown in Fig.

9. There, the resonances of cavities 2 and 3 can be observed

(so that the system can be checked for synchronism and

proper coupling), together with the mixing of the syn-

thesizer signal with the oscillator output. The oscillator line

can then be observed jumping across the resonance lines

and the jump frequencies can be measured on the CRT

display. This method has the disadvantage of requiring an

external signal to be fed into the second and third cavities,

therefore perturbing them.

The second method is very straightforward and, after

proper tuning of the cavities, only requires that the oscilla-
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Fig, 9. Typical CRT display for frequency-jump measurements. This

situation corresponds to the oscillator frequency being located on the

central branch of the stability curve. The two-fine separation is of the
order of 5 MHz. The oscillator line is marked by the sharp spike
between the two resonance lines.

tor signal be fed into ahigh-frequency spectrum analyzer.

With this method, only the tunnel diode RF output is

tapped and the other cavities are unperturbed, From the

values of the pre-jump and post-jump frequencies and

from their symmetry with respect to the synchronism point,

it is then possible to verify whether the spectrum is operat-

ing with the cavities properly tuned. But much more infor-

mation can be derived from the values of the frequency

jumps in the manner described below.

IV. CONNECTION BETWEEN SYSTEM PARAMETERS

AND JUMP FREQUENCIES

If the parameters of the three-cavity system were inde-

pendently known, then (1) would give all the information

necessary to predict, within the above model, the frequency

stabilization properties of the oscillator, as well as the

frequencies at which the frequency jumps would occur. As

we have seen, the coupling coefficients and the cavity

quality factors cannot be easily measured without perturb-

ing the system in a way that affects its performance. But

since (1) describes a curve which is a unique function of the

mentioned parameters, it is possible to work backward.

From the equation and some values of it at some fiducial

points, one can obtain the unperturbed values of quality

factors and coupling coefficients. The only information

necessary to retrieve the values of those parameters is the

value of the oscillator frequency right before and after a set

of two hysteretic jumps. As a check of the frequency

alignment of the cavity, the frequencies of both sets of

jumps can be measured above and below the synchronism

frequency, which should lead to the same values of the

parameters. This method is quite quick and effective, as

long as the oscillator cavity can be tuned, although it has

some problems which will be clarified below.

At the pre-jump points, the following conditions must be
satisfied:

For the labeling of the jump points, see Fig. 3,

(4)

(5)
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A second set of conditions has to be imposed, namely

that the values of the function $1 = $I(q) before and after

the jumps have to be identical

tl(711) =&(712) (6)

&(713)=&(714). (7)

The detailed derivation of the explicit form of (4)-(7) is

given in [9, sec. 2.4]. We have in this way obtained a set of

four independent algebraic equations which can be solved

in terms of the parameters Q2, Q3, kl, and kz which

completely characterizes the frequency stabilization system.

In particular, from these values the stabilization coefficient

dtl =1+ k:[k; -(1/Q:)]

‘= ~ ~=~ [k~+l/(Q,Q,)]2
(8)

can be derived.

A computer program has been written to solve the set of

four mildly nonlinear algebraic equations so that we have

been able to compare the calculated values of the parame-

ters with the measured ones. The equations to be solved

contain, as coefficients, combinations of powers of q = ( a2
— C&)/~2 up to the 8th power, so that any small error in

the determination of o at the jump points, as well as any

small asymmetry of the stability curve with respect to the

synchronism point, rapidly propagates, greatly affecting

the calculated values of the parameters. This method has

given good agreement between the measured values of

Q2, k,, k2, and the ones determined through the frequency

jump measurements. (The curve in Fig. 2 was derived by

measuring the frequency jumps and finding the curve that

would fit them.) The value of Q3, which in the equations

appears as its inverse [9], could not be determined accu-

rately enough, so that it was entered as a parameter in

the solution of the equations. Most of the inaccuracy of the

experimental determination of Q~ has to be ascribed to the

fact that the oscillator cavity, resonating at about 400

MHz, was sharply reentrant and was tuned by adjusting

the gap size. A slight hysteresis in the translation mecha-

nism, combined with the fact that, for reentrant cavities,

the frequency changes very rapidly with the gap linear

dimension, accounted for the discrepancy in the determina-

tion of Qq.

V. CONCLUSIONS

We have analyzed and experimentally verified the prop-

erties of a multiple-cavity frequency stabilization system

for a RF tunnel-diode oscillator. We have found that the

degree of stabilization predicted by a simple model agrees

with our stability measurements. We have indicated a

method by which a nonperturbative measurement of the

stabilization system parameters can be performed. On the

basis of the experience gained with the first model of the

oscillator, a second version has been designed and built

which, in order to improve the mechanical stability of the

system, does not have tuning adjustments. Preliminary

measurements of this oscillator, which operates at 600

MHz, indicate that frequency stabilities in the range Af/f
=10 – 13–10 – 14 could be reached in the near future.
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