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Experimental Properties of Three-Cavity
Tunnel Diode RF Oscillators

ISIDORO E. CAMPISI anD WILLIAM O. HAMILTON

Abstract —The properties of an oscillator-frequency stabilization scheme
involving a system of three resonators used in conjunction with a tunnel
diode as an active element are discussed. A theoretical description of the
behavior of the oscillator is given, together with a procedure which allows
one to verify the validity of the theoretical model. It is found that as the
oscillator is tuned over the operating frequency range, two sets of hyster-
etic frequency jumps are observed, the meastired position of which should
completely characterize the stabilization system’s parameters. Results of
the frequency stability measurements on a prototype of the three-cavity
oscillator are also presented which experimentally agree with the predicted
stabilization properties of the system.

I. INTRODUCTION

HE USE OF high-quality factor resonators in the

frequency stabilization of radio-frequency or micro-
wave oscillators is an established technique. Since super-
conducting resonators became available with Q, =
10'°-101, the best absolute frequency stability perfor-
mances have been obtained by means of techniques which
lock the frequency of a free-running oscillator to a super-
conducting, stable cavity [1]-[3].

Among the various stabilization schemes proposed over
the years, a particularly promising one has been developed
in the Soviet Union [4]-[6]. In this scheme an active
element, such as a tunnel diode, is stabilized in frequency
by coupling it to a system of three cavities. This approach
presents advantages over the use of a single cavity as
a stabilizing element; for instance, it is possible to decrease
the effect of the tunnel diode’s bias current noise [7] by
strongly coupling it to the first cavity (oscillator cavity)
and at the same time one can minimize the self-oscillator
noise [8], which is inversely proportional to the cavity-
loaded quality factor. A single-cavity stabilized oscillator
could not fulfill both requirements at the same time. The
frequency stabilization scheme considered seems particu-
larly promising in applications where a very compact sec-
ondary frequency standard is needed, such as in low-tem-
perature experiments which require a radio-frequency local
oscillator completely operating in a cryogenic environ-
ment [9].

An oscillator was built, operating at 430 MHz, to experi-
mentally verify the validity of the theoretical analysis. This
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first model was not constructed for ultimate absolute
frequency stability, but to allow for the possibility of
varying critical parameters, such as cavity frequencies and
coupling coefficients, the values of which determine the
behavior of the oscillator in the theoretical model. Power
spectra of fractional frequency fluctuations were measured
for the system operating both as a single-cavity and as a
three-cavity oscillator, and their comparison confirmed the
improvement in the operation of the three-cavity system
expected from the theory.

II. THEORETICAL DESCRIPTION OF THE
THREE-CAVITY OSCILLATOR

A detailed analysis of the system was first done by
Minakova and collaborators [10]-[14]. The simplest model
describing this oscillator is one in which three RLC circuits
are coupled together and are powered by an active device
which has a nonlinear voltage-current characteristic (see
Fig. 1). The three coupled nonlinear differential equations
corresponding to this model cannot be exactly solved ana-
lytically, therefore, an approximate analytical method must
be used. The full analysis of the system can be found in [9]:
it makes use of the slowly varying amplitude method of
Bogolyubov and Mitropolski in order to transform the set
of three nonlinear differential equations into a set of six
nonlinear algebraic equations for amplitudes and phases of
the steady-state currents in the three circuits.

The stabilization properties of the system can be derived
from these algebraic equations by solving them in terms of
the oscillator frequency and of the resonators’ natural
frequencies. It is important to know the dependence of the
oscillator frequency in terms of the oscillator cavity’s (reso-
nator 1) resonant frequency. This is because the oscillator’s
cavity frequency is, in first approximation, the frequency
of oscillation of a one-cavity oscillator so that the proper-
ties of a single-cavity oscillator can be related to the
three-cavity one through this relation. This dependence
comes out to be [10]

" +an*+b
" +en*+d

§1=1 (1)

where ¢, = (0} — 02)/0?, 1 = (w? — @3) /@’ w is the oscil-
lator (angular) frequency, and w, is the resonant (angular)
frequency of the ith resonator. The constants a, b, ¢, and d
are functions of the coupling coefficients and of the quality
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Fig. 1. Equivalent circuit of the three-cavity oscillator.

factors of the cavities
a=2082+087—ki-2k3
b= (k3 + 8.0, + k2(i3 — 82)
c=08}+08}-2k3
d=(k2+88,) ®)

with 8, =1/0Q,, 8, =1/0Q3, ki = My, My, /L, L,, and k3 =
My M, /L, Ly. M, are the mutual equivalent inductances
of the resonators, L, their self inductances. Equation (1)
relates the detuning of the oscillator to the first cavity
detuning under the assumption that the second and third
cavities are tuned together (w,=w;). The oscillator is
always operated close to the synchronism point (7= w, =
w5) where the interaction of the oscillator frequency with
the auxiliary cavities’ frequency is important. Under this
circumstance, §; ~ 17 <1, so that
(= w3)/w? = (0+w;)(w—w;)/w?

=2w(w—w;) /0 =2(0w—wy)/w. (3)
Therefore, (3) represents the dimensionless frequency de-
tuning with respect to the synchronism point « = w; = w;.

It should be noted that (1) is inverted since the indepen-
dent variable is §;: the quantity which can be physically
changed is the resonant frequency of resonator 1, to which
a frequency change of the oscillator follows according to
(1). Equation (1) represents, in general, a multivalued
function (see Fig. 2) so that for a given value of w; more
than one frequency of oscillation is possible. This property
can also be understood in terms of the hysteretic behavior
of the oscillator as the first resonator is tuned close to the
synchronism point. Frequency jumps occur, which bring
the oscillator frequency from one stable branch of oscilla-
tion to another (seec Fig. 3). The stable branches are the
ones for which the derivative dn /dé, is positive.

The description that follows highlights the operational
properties of the oscillator relating them to the theoretical
analysis, as they were observed and systematically mea-
sured by determining the frequency of the hysteretic jumps.

When the first cavity is detuned away from the synchro-
nism point, the oscillator behaves like a single-cavity oscil-
lator, in the sense that its frequency linearly follows the
resonant cavity frequency. This agrees with the fact that
the quantity

7t +an’+b
" +ent+d

asymptotically converges.
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Fig. 2. Stability curve of a three-cavity oscillator.
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Fig. 3. Locations of the frequency jumps. The indices label the jump

frequencies. A similar set of frequencies is defined for the jumps at
frequencies below synchromsm.

The phenomenon of frequency jumps of an oscillator
coupled to an additional cavity is well known [15] and is
the result of the fact that, when this coupling occurs, two
separate modes of oscillation can exist. Although the modes
are available simultaneously, the oscillator will lock to the
one that, for the particular frequency of operation chosen,
has higher stability. If the oscillator operating frequency is
changed, then jumps can occur from one mode to the
other, due to the fact that the mode stability is frequency
dependent. The jump is hysteretic, so that the oscillator
will go back to the original mode at a different frequency.

Another way of analyzing the jump phenomenon is by
considering the additional resonator as having a resonance
line with a certain width. As the oscillator is tuned toward
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the second resonator’s frequency, it will interact with its
resonance line. Since oscillations are forbidden at the addi-
tional resonator’s frequency by stability conditions [15], the
oscillator line will have to perform a frequency jump across
the second resonance line.

The same stability criterion applies when the oscillator is
properly coupled to two additional resonators. The only
difference in this case is that the two resonators, being
coupled together and turied to the same frequency, exhibit
not one, but two resonance lines. This line-splitting arises
from the coupling terms of the two differential equations
describing the resonators (as well as, e.g., coupled pendula)
which give, as natural frequencies of oscillation », = », +
Av/2,v, =v, — Ar/2; v, is the natural resonance frequency
of both resonators when decoupled, Az is the line-splitting,
proportional to the coupling coefficient.

Therefore, when an oscillator is coupled to two- addi-
tional resonators and it is tuned over a frequency range
containing both resonance lines, not one, but two frequency
jumps will be observed across the resonance lines corre-
sponding to the frequencies »; and », described above.
Each of these two jumps is hysteretic.

Since two jumps are possible, a central branch of osc111a-
tion between the frequencies »; and », can be observed. In
" terms of Fig. 2, this branch corresponds to the modes of
oscillation lying on the part of the curve going through the
origin. The frequencies », and », correspond to the points
where the curve crosses the 45° line. These parts of the
curve have negative slope, which is equivalent to saying
that the branch is unstable, since they physically represent
the widths of the double lines of the coupled resonators 2
and 3: in these regions, oscillations cannot exist. The slope
of the central branch at the synchronism point (7 = §; = 0),
the inverse of which we call the stabilization coefficient
(see (8)), strongly depends on the coupling properties and
on the choice of the resonators’ quality factors. In general,
a small O, and a large Q, are required for large stabiliza-
tion. The central branch can therefore be made very flat,
thus implying that even large fluctuations in §; (and there-
fore in w;) can be reduced to small fluctuations in » (and
therefore in the oscillator frequency). The above statements
are not true in absolute, since an infinite stability of w; is
assumed. What is true is that, under proper choice of
coupling and of quality factors, the oscillator will be tightly
locked to the frequency of the third resonator, which can
be made very stable but which, in the final analysis, is the
limiting factor of any resonator-stabilized oscillator.

The existence of the central branch of oscillation can be
verified by ascertaining that the oscillator frequency under-
goes two separate hysteretic jumps at the edges of the
branch itself. The slope of the central branch can be
changed by moving the resonances », and », closer or
farther apart, thatis, by changing the coupling between the
cavities. If the coupling is too small, though, the central
branch might disappear.

The best stability performance occurs when the .two
resonators are coupled slightly above the critical coupling,
so that the two resonances are as close together as possible
(thus the central branch is as flat as possible) while still

907

COUPL ING LOOP

TUNING DIAPHRAGM
_POWER OUT

:/TUNNEL DIODE

i TUNING PLUNGER(REAR)
/ SAPPHIRE COUPLING

ROD (FRONT)

() SELF-OSCILLATING
RE-ENTRANT CAVITY

(® FIRST STABILIZING
RE-ENTRANT CAVITY

(3@ SECOND STABILIZING
RE-ENTRANT CAVITY
(HIGH Q SUPER CON-
DUCTING) '

Fig. 4. Cross section of the three-cavity oscillator.

preserving their double line structure. Below critical cou-

- pling, the oscillator line will “see” the second- and third-

cavity resonances as a single line and will jump clear across
both, thus proving the nonexistence of a central branch.

III. EXPERIMENTAL APPARATUS AND TEST

PROCEDURE

A first version of the three-cavity oscillator was built in
order to verify the system’s features predicted by the
theory and to determine which parameters play the most
important roles in the stability performance of the oscilla-
tor itself.

The oscillator was built out of OFHC copper with
reentrant, coaxial-type cavities resonating at ~ 430 MHz
(see Fig. 4). The choice of the operating frequency was
dictated by the requirement that the oscillator could be
used in the future in a gravity-wave detection scheme,
which makes use of an RF system in that frequency range
[16].

The oscillator was designed to operate at cryogenic
temperatures, to make use of superconductors to improve
the Q of the third stabilizing cavity. A special high-vacuum
cryostat was built for this purpose, with mechanical feed-
throughs which enable one to vary the first- and second-
cavity frequencies, as well as the coupling coefficients
between cavities, from the room-temperature environment.

The third cavity was lead electroplated and then chemi-
cally polished, according to a procedure developed at Cal
Tech [17]. It was assembled in an inert-gas glove box.
Although the cavity was not optimized to achieve very high
quality factors, unloaded Q’s of 2-3 X107 were routinely
reached at ~2 K. During the operation in conjunction
with the three-cavity oscillator, Q’s two orders of magni- -
tude smaller were used in order to facilitate the determina-
tion of the system’s parameters. The first and second cavity
had unloaded Q’s typically of 25X 104,

The tuning of the first cavity was accomplished through
a flexible diaphragm, while the second resonator was tuned
by means of a retractable post.
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The first and second cavities were coupled using a
double loop which could be turned from outside the cryo-
stat. The coupling between second and third resonators
was achieved through an iris, into which a length of a
sapphire cylinder could be inserted to change the amount
of coupling to the desired value.

The low-power tunnel diodes used to excite the oscillator
had typical peak currents in the 100-p A range and they
were coupled into the oscillator cavity by means of a short,
thick wire grounded to the center post.

More details on the construction of the oscillator can be
found in [9].

Although the oscillator signal can be extracted through
the same line that carries the dc bias to the tunnel diode,
two diagnostics ports were used in cavities 2 and 3 to more
easily control their tuning, and for the measurement of the
coupling coefficient between them. This measurement was
done in transmission by using an RF synthesizer and a
crystal detector. Fig. 5 shows a graph derived from an
oscilloscope trace of the transmitted power through the
third cavity as a function of frequency, both for the single
cavity and then for the two cavities coupled together [18].

The characterization of the oscillator performance was
done by measuring the spectral density of fractional
frequency fluctuations [19], through a phase-locked loop
system connected to a reference oscillator (see Fig. 6). The
time-dependent phase error signal in the loop was fed into
a minicomputer and later processed via Fast Fourier
Transform.

Power spectra were obtained for the oscillator operating
both in the single-cavity mode and with the stabilizing
cavities. Improvements were observed in the performance
of the oscillator when the three-cavity system was used (see
Fig. 7). Fig. 7 represents the smoothed power spectrum
obtained from a 512-point Fourier transform over the
range of 107%2-1 Hz from the carrier. The decrease in the
amplitude of some spectral components was more than two
orders of magnitude (40 db in the spectral density), a fact
which also was verified by visually inspecting the short
term (10~ 3s) amplitude of the phase-error signal on a CRT
display.

Since the stabilization coefficient is a function of the
coupling coefficient between the second and third cavity,
stability measurements were performed with various de-
grees of coupling. Of particular interest was the perfor-
mance in the vicinity of the critical coupling, where the
central branch of Fig. 2 has the flattest slope before
disappearing altogether (corresponding to the oscillator
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line jumping across the second- and third-cavity reso-
nances). In this limit, the stabilization coefficient is of the
order of §~ Q;/0, [12]. With our system, this quantity
turns out to be of the order of § ~1-5x10%, which is in
agreement with the stabilization independently measured
through power spectra.

Two methods were followed to verify the occurrence of
frequency jumps and to measure the value of those fre-
quencies. The first method is slightly perturbative, since it
requires the use of a frequency synthesizer feeding the
second and third cavity in transmission (see Fig. 8). The
transmission signal is rectified and observed on the CRT.
A typical pattern from this measurement is shown in Fig,
9. There, the resonances of cavities 2 and 3 can be observed
(so that the system can be checked for synchronism and
proper coupling), together with the mixing of the syn-
thesizer signal with the oscillator output. The oscillator line
can then be observed jumping across the resonance lines
and the jump frequencies can be measured on the CRT
display. This method has the disadvantage of requiring an
external signal to be fed into the second and third cavities,
therefore perturbing them.

The second method is very straightforward and, after
proper tuning of the cavities, only requires that the oscilla-
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Fig. 9. Typical CRT display for frequency-jump measurements. This
situation corresponds to the oscillator frequency being located on the
central branch of the stability curve. The two-line separation is of the
order of 5 MHz. The oscillator line is marked by the sharp spike
between the two resonance lines.

tor signal be fed into a high-frequency spectrum analyzer.
With this method, only the tunnel diode RF output is
tapped and the other cavities are unperturbed. From the
values of the pre-jump and post-jump frequencies and
from their symmetry with respect to the synchronism point,
it is then possible to verify whether the spectrum is operat-
ing with the cavities properly tuned. But much more infor-
mation can be derived from the values of the frequency
Jjumps in the manner described below.

IV. CONNECTION BETWEEN SYSTEM PARAMETERS
AND JUMP FREQUENCIES

If the parameters of the three-cavity system were inde-
pendently known, then (1) would give all the information
necessary to predict, within the above model, the frequency
stabilization properties of the oscillator, as well as the
frequencies at which the frequency jumps would occur. As
we have seen, the coupling coefficients and the cavity
quality factors cannot be easily measured without perturb-
ing the system in a way that affects its performance. But
since (1) describes a curve which is a unique function of the
mentioned parameters, it is possible to work backward.
From the equation and some values of it at some fiducial
points, one can obtain the unperturbed values of quality
factors and coupling coefficients. The only information
necessary to retrieve the values of those parameters is the
value of the oscillator frequency right before and after a set
of two hysteretic jumps. As a check of the frequency
alignment of the cavity, the frequencies of both sets of
jumps can be measured above and below the synchronism
frequency, which should lead to the same values of the
parameters. This method is quite quick and effective, as
long as the oscillator cavity can be tuned, although it has
some problems which will be clarified below.

At the pre-jump points, the following conditions must be

satisfied:
d&l)
=) =9 4
(d'!] m ( )

)

For the labeling of the jump points, see Fig. 3.
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A second set of conditions has to be imposed, namely
that the values of the function £; = £,(%) before and after
the jumps have to be identical

51("11)=§1("72) (6)
51(’13)=§1(714)- (7)

The detailed derivation of the explicit form of (4)—(7) is
given in [9, sec. 2.4]. We have in this way obtained a set of
four independent algebraic equations which can be solved
in terms of the parameters Q,, Q,, k;, and k, which
completely characterizes the frequency stabilization system.
In particular, from these values the stabilization coefficient

d_£1 -1+ klz[k%_(l/Q%)] (8)
Ao [K2+1/(0,05)]

can be derived.

A computer program has been written to solve the set of
four mildly nonlinear algebraic equations so that we have
been able to compare the calculated values of the parame-
ters with the measured ones. The equations to be solved
contain, as coefficients, combinations of powers of 7 = (w?
— w?)/w” up to the 8th power, so that any small error in
the determination of w at the jump points, as well as any
small asymmetry of the stability curve with respect to the
synchronism point, rapidly propagates, greatly affecting
the calculated values of the parameters. This method has
given good agreement between the measured values of
Q,, k,, k,, and the ones determined through the frequency
jump measurements. (The curve in Fig. 2 was derived by
measuring the frequency jumps and finding the curve that
would fit them.) The value of Q,, which in the equations
appears as its inverse [9], could not be determined accu-
rately enough, so that it was entered as a parameter in
the solution of the equations. Most of the inaccuracy of the
experimental determination of Q has to be ascribed to the
fact that the oscillator cavity, resonating at about 400
MHz, was sharply reentrant and was tuned by adjusting
the gap size. A slight hysteresis in the translation mecha-
nism, combined with the fact that, for reentrant cavities,
the frequency changes very rapidly with the gap linear
dimension, accounted for the discrepancy in the determina-
tion of Q,.

V. CONCLUSIONS

We have analyzed and experimentally verified the prop-
erties of a multiple-cavity frequency stabilization system
for a RF tunnel-diode oscillator. We have found that the
degree of stabilization predicted by a simple model agrees
with our stability measurements. We have indicated a
method by which a nonperturbative measurement of the
stabilization system parameters can be performed. On the
basis of the experience gained with the first model of the
oscillator, a second version has been designed and built
which, in order to improve the mechanical stability of the
system, does not have tuning adjustments. Preliminary
measurements of this oscillator, which operates at 600
MHz, indicate that frequency stabilities in the range Af/f
=10"13-10" could be reached in the near future.
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